Non-Gaussian Normal Diffusion in a Fluctuating Corrugated Channel

Yunyun Li

School of Physics science and Engineering Tongji University

Outline

• non-Gaussian normal diffusion: experimental evidence

• from Laplace (exponential) to Gaussian distribution, same diffusion constant: the diffusing diffusivity argument

• a microscopic model: Brownian diffusion in a fluctuating corrugated channels

• general remarks

Non-Gaussian Normal Diffusion

key features:

- normal diffusion <x²> =2Dt, same D in both regimes
- pdf scaling P(x/Vt) Laplace (short t) Gaussian (large t)

key ingredient: Slow varying environment

Bo Wang^a, Stephen M. Anthony^b, Sung Chul Bae^a, and Steve Granick^{a,b,c,d,1}

Colloidal beads in entangled actin Suspensions

Wang, Granick, PNAS 106 15160 (2009)

Fig. 3. The second system: Nanospheres diffusing in entangled actin. (*A*) Schematic representation of particles diffusing in entangled actin networks. The mesh size (average spacing between filaments) in nanometers can be estimated as $\xi = 300/\sqrt{c}$, where c is actin concentration in milligrams/milliliter. Their concentration is semidilute. The average particle–particle separation is $\approx 10 \ \mu$ m and their radius is $a = 25-250 \ nm$. (*B*) Mean-square displacement (MSD) normalized by mesh size squared, plotted against time t on a log–log scale for particles in entangled F-actin at conditions of $a = 50 \ nm$, $\xi = 300 \ nm$, showing a slope of unity. (C) Corresponding displacement probability distributions $G_s(r, t)$ plotted logarithmically against linear displacement for delay time of 0.1 s. Here, $G_s(r, t)$ can be fitted with a combination of a Gaussian at small displacement and exponential at large displacement (solid line). In *B*, the dashed line is MSD constructed according to the central Gaussian part in the displacement distribution. In *C*, the dashed line shows a Gaussian distribution with the same diffusion coefficient as for *B*.

Hard-Sphere Colloidal Suspensions

Wang, Granick, ACS Nano 8, 3331 (2014)

more (earlier) observations

ARTICLE

MMUNICATIONS

Received 2 Jan 2016 | Accepted 20 Apr 2016 | Published 26 May 2016

DOI: 10.1038/ncomms11701 OPEN

Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

W. He¹, H. Song², Y. Su², L. Geng³, B.J. Ackerson⁴, H.B. Peng³ & P. Tong²

PHYSICAL REVIEW E 93, 032144 (2016)

Non-Gaussian normal diffusion induced by delocalization

Jianjin Wang,¹ Yong Zhang,¹ and Hong Zhao^{1,2,*}

¹Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, Fujian, China ²Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China (Received 19 October 2015; revised manuscript received 1 February 2016; published 28 March 2016)

Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition

Eric R. Weeks,^{1*} J. C. Crocker,² Andrew C. Levitt,² Andrew Schofield,³ D. A. Weitz¹

www.sciencemag.org SCIENCE VOL 287 28 JANUARY 2000

PHYSICAL REVIEW E 97, 042122 (2018)

Non-Gaussian diffusion in static disordered media

Liang Luo^{1,2} and Ming Yi^{1,2,*} ¹Department of Physics, Huazhong Agricultural University, Wuhan 430070, China ²Institute of Applied Physics, Huazhong Agricultural University, Wuhan 430070, China

(Received 2 December 2017; revised manuscript received 15 March 2018; published 16 April 2018)

Slow environmental relaxation is common in soft matter, as exemplified

Diffusing Diffusivity

 $\dot{x} = \sqrt{|D(t)|} \xi(t)$ $\dot{D} = -D/\tau + \sqrt{D_0} \eta(t)$

where $p(D) = (1/D_0) \exp(-D/D_0)$

• t << τ : Laplace distribution $p(x/\sqrt{t}) = (1/\sqrt{D_0 t}) \exp[-x/\sqrt{D_0 t}]$

(1D)

• t >> τ : Gaussian distribution $p(x/\sqrt{t}) = (1/\sqrt{4\pi D_0})\exp[-x^2/4D_0t]$

Chubynsky & Slater, PRL 113, 098302 (2014)

normal diffusion for any t $\langle x^2 \rangle = 2D_0 t$

- Unable to predict the Short time Gaussian regime
- ✓ microscopic mechanism is not clear

Fluctuating Sinusoidal Channel

$$\dot{r} = \sqrt{D_0} \xi(t)$$

channel boundaries:

$$\omega(x,t) = \frac{y_L}{2} \left[\varepsilon^2 + (1 - \varepsilon^2) \sin^2(\frac{\pi x}{x_L}) \right]$$

pore size:

$$\Delta = y_{L} \varepsilon^{2} (t)$$

$$\dot{\varepsilon} = -\frac{\varepsilon - \varepsilon_0}{\tau} + \sqrt{\frac{D_{\varepsilon}}{\tau^2}}\eta(t)$$

Phys. Rev. Research (accepted)

approximations:

- ✓ pointlike particle
- ✓ No hydrodynamic corrections
- ✓ Reflecting boundary conditions

Main Results ($\varepsilon_0=0$)

Frescaled P(x/\sqrt{t}) are:

- Gaussian at short t
- Laplace (exponential) intermediate t
- Gaussian large t

$$t_{10^4}$$

$$P(\frac{\Delta x}{\sqrt{t}}) = \begin{cases} (4\pi B)^{-1/2} \exp(-\Delta x^2 / 4Bt) \\ (2\alpha)^{-1} \exp(-\Delta x / \alpha \sqrt{t}) \end{cases}$$

- three time scales
 - intracell diffusion time: τ_L

• mean first passage time (MFPT): τ_0

$$\tau_{0} = \frac{x_{L}^{2}}{8D_{0}} \frac{1}{\left\langle \left| \varepsilon \right| \right\rangle} \qquad \qquad \left\langle \left| \varepsilon \right| \right\rangle = \sqrt{\frac{2D_{\varepsilon}}{\pi\tau}}$$

• fluctuation correlation time: τ

$$\mathbf{B} = \mathbf{D} = \frac{x_L^2}{4\tau_0}$$

 $B=D_0$

$$\frac{10^4}{10^4} \underbrace{10^4}_{10^4} \underbrace{10^4}_{10^6} \underbrace{10^6}_{10^6} \underbrace{10^$$

Fluctuating time scale

- all curves collapse on linear branch with diffusion B=D₀ for short time
- Linear fits with large time B
- \succ Lowing τ , the slopes coincide
- ➢ Plateau in the range τ_L <<t<< τ_0 ➢ particle fill up the channel well

Pore Size

- widening the pores, exponential to Gaussian
- Non-Gaussian normal diffusion only occurs when the channel fluctuations are strong enough to actually open/closing.

Conclusions

• simple microscopic model exhibiting non-Gaussian normal diffusion

• all main features of the phenomenon

 $\dot{\varepsilon} = -(\varepsilon - \varepsilon_0)/\tau + \sqrt{D_{\varepsilon}/\tau^2} \eta(t)$

• pore opening-closing play a key role

Acknowledgement

Collaborators:

Prof. Fabio Marchesoni

Prof. Pulak Ghosh

PhD

Qingqing Yin

Graduate students

Lihua Li

Jiajia Yang

Yaqi Pei

Postdoc. and Researcher positions are available in Tongji University.

fabio.marchesoni@pg.infn.it yunyunli@tongji.edu.cn

Thank You For Your Attention !